- FERRANTI

FM1600B
Microcircuit
Computer

LELLITTITTIR

Ferranti FM1600B
Microcircuit Computer

Contents
Page 3 Introduction
4 Main Features
6 Instruction Format
8 Control Hardware
9 Software
10 Input/Output

12 Autocode Instructions

©

The Copyrightin this work is vested in Ferranti Ltd. and the documentisissued in confidence for the
purpose only for whichitis supplied. It must not be reproduced in whole or in part, or used for
tendering or manufacturing purposes except under an agreement or with the consent in writing of
Ferranti Ltd., and then only on condition that this notice is included in any such reproduction.

1

Standard Vi

FMI1600E
Microcircuit Computer

Basic Features

Structure Central Processor formedof19,
6-layer printed circuit panels which
pluginto a12-layer printed circuit
Backboard.

Logic Ferranti Micronor 1l circuits.

Size and Weight Central Processorincluding
4 K,/1 usec Ferranti store occupies
one shelf19x16x7 in. and weighs

40 Ib.

Storage Up to 65536 wordsin 4096 word
increments.

Word Length 24 bits.

Mode Parallel.

Clock Rate 3 MHz. Eachlogic beat takes 5 usec.

Arithmetic Fixed Point and Floating Point.

Single length shift, left or right, with
or without end around carry takes
s psec.

Fast Shift

F1600, variable address.

Instruction Code

Hardware ‘push down’ or link nest
store.

Linlk Nest

Up to 22 ‘Christchurch’ Ferranti B
input/output channels via modular
Computer Interrupt Equipment.

| Interface

2

Introduction

The FM1600B is the latest machine in the series of F1600 general purpose real-time
digital computers developed by the Digital Systems Department of Ferranti Limited of
Bracknell, Berkshire. Itis the ‘basic’ version of the recently introduced FM 1600
microcircuit computer and is intended for use in systems where the power of the
larger machine is not required.

Certain new features relating to the basic control of the machine and to the design of
the function unit, have been patented and incorporated into the FM1600B. As a result,
the FM1600B is about one fifth the size and yet retains about half the power of the
FM1600.

Together these two machines satisfy the requirements of real-time systems ranging
from large multiple computer automatic data handling and control systems down to
specific individual control applications in the military and civil fields.

The computers have been developed as two items in a range of modular equipment for
handling inputs and outputs from a multiplicity of sources as encountered in:

% Naval Data Handling and Weapon Control Systems
% Air Defence Systems

% Message Switching Systems

% Air Traffic Control Systems

v Tactical Trainers

Y% Simulators

% Program Development Centres

The modules all use similar circuitry and mechanical construction and cover such
operations as:

% Automatic Radar Data Extraction

% Shaft Angle Encoding and Decoding

% Control of C.R.T. displays

% Interfacing to digital data links

v Interfacing to backing stores

Y Interfacing to line printers and digital plotters

The computers have been engineered to meet British and NATO Defence specifications.
These reflect the exacting environmental conditions of military systems, but it must be
stressed that the computers are general purpose machines suitable for most on-line,
real-time, civil and military applications.

The F1600 instruction code is used. This code is well proven, having been in use for
more than five years’ and the experience so gained is reflected in the performance of the
FM1600B. The fuli range of compilers, the sub-routine library and general support
software developed over this period is immediately available for use with the FM1600B.

3

Word Length

Mode

Representation

Cloclk Rate

Instruction Code
Weight

Power Consumption

Storage

Main Features

The FM1600B central processor is formed of 19, 6-layer printed circuit panels which
plugintoa 1-2—Iayer printed circuit backboard. On the panels are mounted Ferranti
Micronor Ilintegrated circuits, a fast DTL logic with typical signal rise times of 8 nsecs,
in TO5 cans. The panels and the backboard have the necessary transmission line

characteristics for handling signals with such fastrise times, and the use of a multi-layer
backboard allows much complex backwiring to be avoided.

The central processor, including one 4096 w i

complete with drive and address circuits fi?s:q o e legt i
19x16x7in. (49 om x 41 cmx18 cm). This is
standard rack which holds six equi
supply and cooling unit.

three shelf module.

Basic Features
24 bits.

Parallel.

Binary, two’s complement for negative numbers

puteris ; ;
one beat every % pus. 3 MHz. Logic beats are carried out at the rate of

F1600, variable address.

The central processor with 4096 words of storg Weighs 40 |b (18 kg)
s a).

Central Processor

Storage : First 4096 words 50 watts
Foreach additional 4096 words 110 watts
12 watts

» OCCupyin
computer. At present Ferranti 1 us Storgge ig;f\:;&gshelves, may be attached to the

computer is designed to make efficient yse blein units of 4096 words. The
. of st

storage of this speed, under development by Feﬁ;if_pee_ds of up to 600 nsec and

16384 word units. L will be available by 1969 in

Fast Shift Facility

Floating Point
Arithmetic

Link Nest Store

Single Address
Function

Special Features

A new feature in the function unit of the FM1600B is the powerful fast shift network.
In one pass through the function unit a 24-bit word can be shifted any number of
places left or right with or without end around carry. The time taken for such a shiftis
one logic beat of % ps. Besides increasing the speed of shift instructions, this feature
speeds up bit testing, bit changing, and normalising instructions. As about a fifth of
the instructions in typical tactical and fire control programs are of this type significant
speed increases are obtained.

Advantage has been taken of the fast shift facility to provide floating point arithmetic
which is fast, automatic and cost effective.

Floating point instructions are specified in the Extracode section of the F1600
instruction code list. Operands are held in the computer packed into single words with
the format:

Bits 0-5, Exponent

Bits 6-23, Mantissa

So far as is known the FM1600B is the only small computer currently available with
floating point operation as a basic feature of the central processor.

An address pointer is provided which enables an automated link nest to be placed
anywhere in the core store. Address or data words can be sequentlajly stor_e-d and
extracted in the reverse order to thatin which they were entered. This prowdes a neat
method for handling entry and exit points of interrupt programs and sub-routines ; each
time a program or sub-routine is interrupted the contlnuatlon'address is auto_maucaily
stored and, when the interrupt program has been completed, is extracted. This enables
multi-activation of sub-routines to take place without increase in Supervisor program
load, and enables economies in storage space to be realised, typically between 5 and

11 words of store for each sub-routine and interrupt program.

been built into the FM1600B. This functionis

e instruction code and by transferring data from
ulator, extends the ability of the FM1600B to
hich true random access is required.

A special Single Address Function has
specified in the Extracode section of th
random core store locations to anaccum
deal with the comparatively rare occasionsonw

Instruction Times

Typical instruction times, assuming the use of 1 usstorage, are given belpw. These are
for two and three address operations between dirc_ecﬂy addressable locations and are
often equivalent to two or more instructions in a single addresslcode. For this reason
these times are not directly comparable with times guoted for single or one and a half

address computers.

The full implications of this instruction formatin relation to single and one and a half
address operations are discussed in the next section.

Timein Microseconds

Function Fixed Point Floating Point
Add/subtract 27— 4-3 6:3-7-0
Multiply 11-3-13-3 14-0

Divide 13-0-16-0 15-3

Shifts 27— 87 -

Jumps 2:0- 57

5

Instruction Format

One of the most advanced features common throughout the F1600 seriés machines is
the instruction code. The techniques used in this code offer a number of advantages
of increasing significance to all types of real-time system.

in the development of the code, priority was given to three main factors :

(a)

The desirability of improved methods of addressing to make more efficient use of

costly quick access storage. This has always been a major factor in achieving cost
effectiveness, but now that the cost of a modern compact central processor has been
reduced to little more than that of 4000 words of core store the efficient use of storage
assumes even greater significance.

(b)

The need for a comprehensive function list so that maximum advantage may be gained
froma powerful function unit.

(c)

The problem of developing computers of different sizes and capability but with
complete instruction code compatibility.

The code has been well proven in over five years’ use and its effectiveness is reflected
in the performance of the FM1600B. Very high bit efficiency is achieved'by the address
structure and this, together with the value of a comprehensive function |I§t. reduces the
amount of program store required in representative systems. Recent studies have
shown, for example, that for typical programs the FM1600B uses !es§ than half the
program store required by a single address computer of relatively limited function

repertoire.

The F1600 code uses a multiple address format which caters for the maximum of three
variables in typical autocode instructions and provides for both direct and indirect
addressing. A maximum of 23 accumulators, the first 23 locations of the core store in
the FM16008B, may be directly addressed and the main store may be indirectly
addressed via index registers which hold the required full length addresses. A

generous allowance of 9 bits for the function field makes for a comprehensive function
list containing combinations of a main and a subsidiary function.

Three addresses and the large function field are handled within a single 24-bit
instruction in the following format :

FUNCTION 3 ADDRESSES
FIDS A B C
9 bits 5 bits each

F. 1, D, S are the sub-fields which constitute the main and subsidiary function fields,

and give 512 combinations, of which about 350 have been used in practice. Typically

B and C identify the operands upon which the function is performed and A supplies

the address at which the result is stored. In certain instructions, such as ‘jump storing
link’, part of the S field and the A, B and C fields are used to hold the jump address.

6

Load Functions

Index Functions

Modify Functions

In the F1600 code the required combinations of main and subsidiary functions have
been selectively spaced throughout the 512 available codings, as opposed to being
formed into a consecutive list. The positioning of the undefined codings has been
exploited, in conjunction with the Executive Register, to simplify the computer control
logic. The Executive Control System is explained in the next section.

The addressing structure of the code exploits the fact that address references in real
programs are never distributed in a truly random fashion. In practice related data are
located either in limited areas of store or in a patterned sequence ; consequently,
addressing usually takes the form of random access within these limited areas or of a
controlled sweep through the store. Most of the address of a required location can
therefore be predicted in advance so that the specification of a full length address in
each instruction would entail redundancy and consequent waste of storage space. In
the F1600 code this redundancy is avoided by the use of short addresses and indirect

addressing via index registers.

Ifit were necessary to use a fresh instruction to load an index register prior to every new
store access, then the advantage of indirect addressing would be lost. It follows
therefore that the efficiency of indirect addressing depends on the facilities available
for setting and changing the contents of the index registers. These facilities are
provided by three subsidiary functions which can be specified and carried out
concurrently with the main function. These subsidiary functions are :

These set an index register to a main store address. The loaded address is then
immediately available for use as an operand source or destination in the main function.

These increment or decrement the contents of an index register by unity.

These add a constant within the range of 0-31 to the address held in an index register
prior to the address being used in the main function. The index register either

retains its original contents oris given the modified value at the programmer’s
discretion. Thus either random access within a block of 32 words in the main store ora

controlled sweep of regularly spaced stored data is available.

ffectiveness of these su bsidiary functions is illustrated by a recent analysis which
00 words of proven real-time software only 7% of the

d the loading of an index register.

Thee
showed that of over 1 50
instructions used involve

The Executive Register

FMI1600B Executive
Format

Control Hardware

Overall control of the computer is organised through a patented Executive Control
System in which use is made of the fact that any instruction included in F1600 code
can be executed by performing in a fixed sequence a sub-set of 12 basic computer
actions. The system is centralised in a special 12-bit register, known as ‘Executive’, in
which each bit corresponds to one such basic action. The basic actions within the
Executive Register format are given in the following table.

Executive

Register Bit Instruction

1 Load/Modify Index Registers

2 Read C Operand

3 - Read B Operand and perform simple function

i_ Increment/Decrement Index Registers

57 o Justify

6 — Denormalise

7 7 Multibeat functions

8 o Floating point arithmetic o
9 - Normalise - -
10 Write to A o
mo Jump o
12 Pseudo-instruction

As the instruction is read from the store the function bits are inspected and the
executive actions appropriate to the main and subsidiary functions selected. After
completion of the read-instruction beat the relevant executive bits are set and, since
these bits define not only the required actions but also their sequence, the instruction
can then be processed automatically. The operations are always carried out in
numerical sequence from 1 to 12 although, since typical instructions inv

; . olve only
three or four executive actions, only those called for are performed.

A simple priority network continuously inspects the executive register and defines the
action currently being performed. On completion of this action the corresponding bit is
cleared and the priority network automatically selects the next action required. When

all the bits are clear the current instruction has been completed and the next instruction
is accessed.

In practice some instructions occur in which the destination address A is the same as
address B. In the FM1600B the Executive Register Control takes advantage of this to
save significant time in all simple functions. In instructions of this type, bit 10

(WRITE TO A) of Executive is not set. Instead the READ B OPERAND micro-action is
extended by ' us to allow time for the function to be performed between the read and
write halves of the store cycle.

8

Autocodes:
FIXPAC

FLOPAC

High Level Languages:
ALGOL

FORTRAN

CORAL

Software

The Digital Systems Department incorporates a Programming Section employing
upwarfjs of one hqndred programmers. The section has an in-house Computer Centre
comprising a multi-access computer suite with a quad magnetic tape unit and a million
word drum store. Up to four programmers may have simultaneous use of the suite
which is also equipped with high speed line printers and digital plotters.

During the last five years’ both Fixed Point and Floating Point Autocodes together with
alarge Standard Sub-routine Library, have been developed and used in many
applications. In addition compilers for a number of high level languages including
Algol, Fortran and Coral are available.

This is a Fixed Point Autocode, enabling computer programs to be written in a
conveniently simple and economical form, saving the programmer the considerable
effort required in machine language programming to compose complex sequences
for direct input to the computer.

As shown in the brief description of the instruction format, the three address fields of
the instruction code correspond to the maximum of three variables of a typical Fixed
Point Autocode instruction. Programs written in FIXPAC therefore exhibit a close
correspondence with programs written in F1600 machine code, and hence are
virtually as efficient as machine code programs.

This is a double word length Floating Point Autocode which has been designed to give
flexibility in complex mathematical calculations. In FLOPAC the mantissa and exponent

can each be up to 24 bitsinlength.

An Algol compiler which accepts a sub-set of Algol 60 is available. A full description is
given in a separate publication entitled ‘Ferranti Algol".

The version of Fortran implemented by Ferra nti is based on the ECMA specification,
and has been designed to provide a Fortran facility for a small machine. Compilation
works from a paper tape, produces machine code in asingle pass and can be used in a

computer having 8000 words of store.

CORAL is a real-time language which is derived from the well established JOVIAL
language. The original definition of CORAL (called CORAL 64) was made by a
committee at the Royal Radar Establishment, Malvern, England, primarily for use in the
real-time radar data processing field. The design of Ferranti’s implementation of
CORAL is based on this specification, and on discussions with officers of the Royal
Radar Establishment. It includes features not presentin CORAL 64, for example,
floating point arithmetic.

Great attention has been given to providing good ‘debugging’ facilities. Rigorous
syntax and semantic checks are applied at compile-time and one of the intermediate
codes produced can be run interpretively with extensive run-time diagnostic capability.

9

Input/Output

Computer Interrupt The FM1600B central processor is designed to work with modular Computer Interrupt

Equipment

Standard Interface

Data Interrupts

Equipment (C.LE.) which is constructed in the same technology as the computer. The
basic C.I.E. module is a three-quarter shelf unit capable of handling up to 12 Ferranti B
(Christchurch) Standard Interface Channels. A larger, full shelf, C.1.E. module is also
available which can handle up to 22 Standard Interface Channels.

The Ferranti B (Christchurch) Standard Interface was designed to cater for the
requirements of real-time systems in which a variety of fast independent peripherals
may work together. These needs are met by ensuring that all transfers to or from the
computer are entirely autonomous and independent of the program currently running.
Transfers across this interface are carried out on a handshake basis. This avoids strict
timing rules and restrictions on computer to peripheral cable lengths.

Each Standard Interface Channel can handle a single complex peripheral, such as a
multi-console alpha-numeric display system, or a number of simpler peripherals
multiplexed on to the one channel. Examples of groups of peripherals which can be
serviced by a single channel are :

Afew hundred single bit input and output lines.

Afew tens of teleprinters.

A Master/Slave quad magnetic tape system.

A single Shaft Angle Encoder which accepts inputs from up to 28 shafts on a time
multiplexed sampling basis and

eight Shaft Angle Decoders, each capable of accurately controlling the position of an
independent shaft.

The autonomous transfer requests fall into two classe

s: Data Interrupts and
Program Interrupts.

Data interrupts are allowed within instructions between executive beats and also
between the individual beats of multi-beat functions, e.g. multiply, divide. This gives a
maximum waiting time for data interrupts of 3 ys.

Since requests from peripherals are all independent and asynchronous, allowance has
to be made for the presence of multiple requests. Prior to carrying out a data interrupt,
therefore, a priority assessment of all requests present is performed. Advantage is taken
of the fast shift capability of FM16008B to save the additional hardware which is
normally required to carry out such priority assessments.

When one or more data interrupt requests are present, the C.|.E. seeks tointerrupt the
central processor. As soon as the interrupt is established (within 3 ;s) a request word
is input to the central processor. This word consists of the complete set of request
staticisers and is normalised by the central processor. The number of shifts required to
normalise this word is available within % s and is equal to the channel number of the
highest priority request present.

The time taken by each data interruptis dependent on the number of store cycles
required by the interrupt and on the number of extra logic beats required for indexing
and address transfers. Since a handshake principle is used for the transfer of data across
the standard interface, a further variable time may be added to the interrupt time
depending on the distance between the computer and the peripheral. For peripherals
within 40 ft. of the computer this time can usually be absorbed within the interrupt. The
following are some typical times for peripherals within 40 ft. of the computer.

10

Program Interrupts

Fast Input 2us

Slow Input 3% ps
Fast Output 3% ps
Slow Output 4% ps

When multiple requests of the computer are present at one time, the complete set of
data interrupts required are carried out without any gaps between them.

Program interrupts are only accepted between instructions. The waiting time for the
highest priority program interrupt, when no other interrupt is already in progress, is
therefore no greater than the longest instruction time (19 us).

When a program interrupt occurs, the interrupt staticiser, Q2, is set and all further
program interrupts are locked out until Q2 has been cleared. Itis normal practice to
clear this staticiser within the interrupt program, as soon as any urgent work has been
carried out. It should be noted that data interrupts are not locked out while Q2 is set.

The program interrupt mechanism is similar to that for data interrupts. An interrupt is
established at the end of an instruction when one or more program interrupt requests
are present. Prior to actually accepting the interrupt, the central processor carries out a
store link procedure identical to that performed by the jump and store link process,
except that Q2 is also set. Assuming no data interrupt requests have occurred during
the store link process, a procedure similar to that of a data interrupt is entered on behalf
of the program interrupt. The actions carried out are : the assessment of the program
interrupt priority (identical to that for a data interrupt) ; the loading of the instruction
number register with the first address of the interrupt program ; the transfer of the
status word. The total time taken in establishing the interrupt and entering the new
program is about 7 us.

11

A Full Table of Fixed-Point Autocode Instructions

Operation Description Nominal instruction time in us
Basic Operations
1. vA=uvB Transfer from register B to register A 33
2. vA=uvB+C Add contents of two registers 4-3
3. vA=vB-1C Subtract contents of two registers 4-3
4. vA =B &C AND operation (logical multiplication) 4-3
5. vA=uB7# vC NOT EQUIVALENT operation (logical addition) 4-3
Multiplication
6. vA=uvB x vC Double length multiplication —resultin Aand (A + 1) 133
7. vA=uvB x vC,F Single length product (rounded) — fractional interpretation 12:3
8. vA=vB x vC| Single length product (unrounded) — integer interpretation 12-3
Division
9. vA =vB/+C,Q Division ; store quotientin A 15-0
10. vA = vB/vC.R Division ; store remainderin A 150
11. vA=vB/vC,QR Division ; store remainder in A and quotientin (A+1) 16-0
12. vA=uB/uC,IQ Integer division ; store quotient in A. 14-0
13. vA = vB/vC,FQ Fractional division, single length divisor ; store quotientin A 14-0
Arithmetic Shifts
14. vA = vB (vC),LD Double length shift left vC places of v(B,B + 1) 87
15. vA = vB (vC),RD Double length shift right »C places of v(B,B + 1) 87
16. vA=vB (vC),L Single length shift left vC places of vB 67
17. vA=vB (»C),R Single length shift right »C places of vB (rounded) 6-7
Logical Shifts
18. »A = »B((vC)),L Single length shift left vC places of vB 4-3
19. vA = vB((vC)),.R Single length shift right vC places of vB 4:3
20. vA = vB((vC)).E Single length right end-around shift vC places of vB 4.3
21. vA = vB((vC)),LD Double length shift left »C places of »(B,B + 1) 83
22. »A = vB((vC)).RD Double length shift right vC places of »(B,B + 1) 83
Special Shifts
23. vA=vB->N Normalize vB, number of shifts in A ; normalized formin (A + 1) 5-0
24. vA=vB-C Count number of ones in B 11-3
Indexing
25. vA=uB,nix1 Transfer order with simultaneous indexing of specified N register
(i=1,2,3) 47
26. vA=vB+uC,nix1 Add with indexing
vA = vB - C nit1 Subtract with indexing 57
vA = vB & vC, ni =1 AND with indexing
vA=vB #vC,nit1 NOT EQUIVALENT with indexing
Load
27. ni=vA Load index register Ni
28. ni = vA, ni =C Load Ni and transfer
29. ni= A, ni=vB * uC Load Ni and write the result of an operation to main store
ni = »A, ni = vB & vC { 73
ni = vA, ni = vB #uvC
30. ni=vB, vA=ni+ sC Load Ni and write to store (Examples only)
ni = vC, vA = vB — ni
Modification (0<K<31)
31. vA = v(ni +K) Modified transfer
32, w(ni + K) = vC Modified transfer 73
33. v(ni+K)=vB = .C Modified write to store
Bit Operations
34. vB(vC) =0 Clear bit vC of vB 4-0
#0 Set bit vC of vB 4-0
35. QC=0 ClearQstat C 2:3
#0 SetQstatC 2:3
Unconditional Jumps
36. > Label Unconditional jump 2:0
37. -> Label, L Unconditional jump storing link in nest 4-3
38. >L Obey link 3-7
39. -~ Sn Jump to subroutine n, normal entry 3.7
40. >Sn,m Jump to subroutine n, entry m 37
Conditional Jumps
41. — Label, vB =0 Test vB, jump if positive 27,33
42. — Label, vB £ vC <O Jump ifresult <O 37,43
43. »Label, vB & vC =0 Jump if result = O 3:7,4-3| Longertime
44. »Label, vB=vB +vC >0 Jump if result is zero and store resuit 4-0,4-7| ifjump > 16
45. - Label, vB =vB #vC ~ o} Jump if result non zero and store result 4.0,4-7 \ places:
46. -~ Label, vB(¥C) =0 Jump if specified b!t clear 3-7,4-3 [independent
<0 Jump if specified bit set 3-7,4-3| of whether
47. - Label, vB(vC) =0 Jump if specified bit set and clear it 4-0,4-7| satisfied
48. -Label,QC=0 Jump if Q statiscisor clear 20,27
’ ;0 Jump if Q statiscisor set 20,27
; s
lil\llgnsc’zlljgioa (Label) Read labelled data and set address in N 7.7
" Stop identified by number C
50. STOPC ;
51. WAIT Optvqnal Stqp '
" END Last instruction in program
52 E gIT «C Clear vA and set it equal to bit vC only 4.3
63. vA - .C Set register to »C. Zeros at most significant end and ones elsewhere 4.3
64 A MASK: Set C to the inverse pattern of the above
43

55 A MASK/C

NCTE ALL the umes quoted are between accumulators.

FERRANTI

For further details contact :

Ferranti Limited,

Digital Systems Departmen
Western Road, d e
Bracknell,

Berkshire,

England.

Telephone: 0344 3232
Telex: 84117

List DSD/68/6. Printed in England PLH. September 1968. Revised October 1968

